Non-abelian bosonization from factored coset models in path integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Non-Abelian Bosonization

We present an extension of “smooth bosonization” to the non-Abelian case. We construct an enlarged theory containing both bosonic and fermionic fields which exhibits a local chiral gauge symmetry. A gauge fixing function depending on one real parameter allows us to interpolate smoothly between a purely fermionic and a purely bosonic representation. The procedure is, in the special case of boson...

متن کامل

Non-Abelian Bosonization and Haldane’s Conjecture

We study the long wavelength limit of a spin S Heisenberg antiferromagnetic chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S SU(2) WessZumino-Witten model. This effective theory is then mapped into a compact U(1) boson interacting with Z2S parafermions. The analysis of this effective theory allows us to show that when S is an integer there is a mass gap to all excita...

متن کامل

Wick Rotation and Abelian Bosonization

We investigate the connection between Abelian bosonization in the Minkowski and Euclidean formalisms. The relation is best seen in the complex time formalism of S. A. Fulling and S. N. M. Ruijsenaars [11].

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

Non-Abelian Bosonization as a Nonholonomic Transformation from a Flat to a Curved Field Space

There exists a simple rule by which path integrals for the motion of a point particle in a flat space can be transformed correctly into those in a curved space. This rule arose from wellestablished methods in the theory of plastic deformations, where crystals with defects are described mathematically by applying active nonholonomic coordinate transformations to ideal crystals. In the context of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 1995

ISSN: 0550-3213

DOI: 10.1016/0550-3213(94)00568-y